

Common Equations Used in Chemistry

Equation for density: d=m/v

Converting °F to °C: °C = (°F - 32) x 5/9

Converting °C to °F: °F = °C x 9/5 + 32

Converting °C to K: K = (°C + 273.15)

Percent composition of an element = $\frac{n \times \text{molar mass of element}}{\text{molar mass of compound}} \times 100\%$

- where n = the number of moles of the element in one mole of the compound

% yield = $\frac{\text{actual yield}}{\text{theoretical yield}}$ x 100%

molarity (M) = $\frac{\text{moles of solute}}{\text{liters of solution}}$

Dilution of Solution: $M_i V_i = M_f V_f$

Boyle's law - Constant T and n: PV = k

Boyle's law - For calculating changes in pressure or volume: $P_1V_1 = P_2V_2$

Charles' law - Constant P and $n: \frac{V}{T} = k$

Charles' law - For calculating temperature or volume changes: $\frac{V_1}{T_1} = \frac{V_2}{T_2}$

Avogadro's law - Constant P and T: $V = k^*n$

Ideal Gas equation: PV = nRT

Calculation of changes in pressure, temperature, or volume of gas when n is constant:

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

Calculation of density or molar mass of gas: $d = \frac{PM}{RT}$

Dalton's law of partial pressures - for calculating partial pressures: $P_i = X_i P_T$

Root-mean-square speed of gas molecules: $u_{\text{rms}} = \left(\frac{3RT}{M}\right) 0.5$

Van der waals equation; for calculating the pressure of a nonideal gas: $(P + \frac{an^2}{V^2})(V - nb) = nRT$

Definition of heat capacity, where s is specific heat: C = msCalculation of heat change in terms of specific heat : $q = ms\Delta t$

Calculation of heat change in terms of heat capacity: $q = C\Delta t$

Electrical force:
$$Fel = k \frac{q1q2}{r2}$$

Potential energy: $V = k \frac{q1q2}{r}$

Calculation of standard enthalpy of reaction:

 $\Delta H^{\circ}rxn = \sum n\Delta H^{\circ}f$ (products) - $\sum m\Delta H^{\circ}f$ (reactants) [where n and m are coefficients in equation]

Mathematical statement of the first law of thermodynamics: $\Delta E = q + w$

Work done in gas expansion or compression: $w = -P\Delta V$

Definition of enthalpy: H = E + PV

Enthalpy (or energy) change for a constant-pressure process: $\Delta H = \Delta E + P\Delta V$

Enthalpy (or energy) change for a constant-pressure process: $\Delta E = \Delta H - RT\Delta n$, where n is the change in the number of moles of gas.

Relationship of wavelength and frequency: $u = \lambda v$

Energy of a photon: E = h v

Energy of an electron in the n^{th} state in a hydrogen atom: $E_n = -RH(\frac{1}{n^2})$, where $R_H = Rydberg \text{ constant} = 2.18 \times 10^{-18} \text{ J}$

Energy of a photon emitted as the electron undergoes a transition from the n_i level to the nf level: $\Delta E = h v = RH \frac{1}{ni^2} - \frac{1}{nf^2}$, where RH = Rydberg constant = 2.18 x 10⁻¹⁸ J

DeBroglie Relationship of wavelength of a particle to its mass m and velocity v: $\lambda = \frac{h}{mv}$ Uncertainty in the position (x) or in the momentum (p) of a particle: $\Delta x \Delta p \ge h$ 4π

Formal charge on an atom in a Lewis structure = total number of valence electrons in the free atom - total number of nonbonding electrons - 12(total number of bonding electrons)

Enthalpy change of a reaction from bond energies: $\Delta H^{\circ} = \sum BE \text{ (reactants)} - \sum BE \text{ (products)}$

Dipole moment in terms of charge (Q) and distance of separation (r) between charges: $\mu = Q \times r$

Bragg equation for calculating the distance between planes of atoms in a crystal lattice:

 $2d \sin \theta = v \lambda$

Clasius-Clapeyron equation for determining Δ Hvap of a liquid:

$$\ln P = -\frac{\Delta H vap}{RT} + C$$

Calculation of ΔH_{vap} , vapor pressure or boiling point of a liquid:

$$\ln \frac{P_1}{P_2} = \frac{\Delta H v_{ap}}{R} \frac{T_1 - T_2}{(T_1 T_2)}$$